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A number of papers (see, for example, [l-7] in which other references also are cited) have 

studied a genera1ize.d model of an elastic medium with an asymmetric stress tensor - the 

asymmetrical theory of elasticity. It is felt that the essential feature of this model is the 

inclusion of a characteristic parameter having the dimension of length. As a result, the 

model takes into account scale effects (micro-heterogeneity), and in this sense represents 

the next approximation as compared with the normal theory of elasticity*. At the same 

time. asymmetry of the stress tensor is evidently not a characteristic feature of the model 

and can be eliminated by appropriate determination of the stresses. 

The aim of this study is to develop a general linear model of a macroscopically homo- 

geneous elastic medium with a simple microstructure. The latter, in contrast to complex 

microstructures, is characterized by the fact that to define it kinematically it is snfficient 

to specify the field of displacement vectors. 

As an initial micromodel we have taken the Born model of a simple lattice [9]. In 

section 1 we consider an algorithm which enables us to COnstNCt a one-to-one corres- 

pondence between the discrete structure and some analytical structure. We use this 

algorithm in section 2 to derive an exact continuous representation for the Born model 

which has the same form ss in the normal theory of elasticity but with an operator form of 

Hooke’s law. 

The kernel of the corresponding integral operator can be expressed explicitly in terms 

of the force constants of the micromodel. In this case it is possible to derive a theory 

which retains the symmetry of the stress tensor and the usual expression for the density of 

strain energy. Therefore, it is no longer necessary to introduce a couple-stress tensor 

employed in the asymmetrical theory of elasticity. 

From the phenomenologic~ point of view the proposed model corresponds to the 

* An analogous situation srlses in the electrodynamics of a continuous medium with micro- 
heterogeneities, where the corresponding effect has been called (weak) three-dimensional 

dispersion [8]. 
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general case of strong dispersion. In a zero order long-wave approximation we arrive at the 

normal theory of elasticity. In particular, it is shown that in contrast to the generally ac- 

cepted approach [9 and 101 th e correct symmetry of the tensor of the moduli of elasticity 

is a direct result of the requirement of invariance of energy with respect to rotation, inde- 

pendently of the presence of initial stresses. 

In section 3 we consider the case of weak dispersion and a model of an isotropic 

medium with arbitrary dispersion. We establish the way in which the solution of an elasti- 

city problem with dispersion can be obtained from the normal theory of elasticity by re- 

placing the elastic constants by operators. We derive an expression for Green’s tensor 

for an isotropic medium with strong or weak dispersion. 

1. Consider a simple three-dimensional lattice defined by three non-coplanar vectors 

e,(a = 1, 2, 3)). The lattice is invariant with respect to displacement along any of these 

vectors. As usual, we take as an elemental cell A, a parallelepiped constructed on ea. 

It is convenient to introduce an oblique lattice system of coordinates xowith the basis 

eaand the metric tensor gaB = e, - ep Then, the nodes of the lattice correspond to the 
a vector n = Pea , with integral components n . 

Let N (A) be a linear space of scalar or tensor functions II (n) specified at the nodes 

of the lattice, and increasing as 1 nl -+mnot faster than some power of 1 nl. In the following 

we also should be able to interpolate the functions u (n) by analytic functions u fn) which 

are defined uniquely by certain natural conditions. 

In addition to the interpolating function u (x) we shall consider its Fourier transform, 

for which we retain the same notation but with argument k 

u (k) = $ u (5) e’ksX dx (dx = dx’dxzdti) (1.1) 

In the k-space we introduce a system of coordinates kp with the basis e P dual to the 

ea : ef’-e, - 6,p, and we construct a parallelepiped B {- 3t < ke Q n} with identified 

opposite points. Let B (k) be a characteristic function of the region B, i.e. B (k) = 1 for 

r% E B and B (k) = 0 for k e B. We denote the Fourier inverse transform B (k), by 

6, (XI 

where v A is the volume of the cell A. Obviously, 6B (0) = VA’ and 6, (n) = 0 at all 

the other nodes. 

First let us suppose that I( (n) decreases sufficiently rapidly as InI + 00 and let us 

define the function 

u (k) = v,B (k) 2 u (n) ei”k 
(1.3) 

Expression (1.3) is the expansion of II (k) in the region B into a Fourier series with 

the coefficients uA u (n), and the truncating function B (k) causes II (k) to vanish outside 

B. For the Fourier inverse tranform u (z) of the function a (k), we find 

u (x) = VA 2 u (n) 6B (x - n) 
?I (1.4) 
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It can be shown [Ill that II fx) continues analytically into the complex region as an 

entire function of the first order of growth and of the v-type. 

Considering the properties of 6, (xl we can easily see that u (x), as defined by (1.4, 

is the required interpolating function. The one-to-one correspondence II (n) ==$ u (xl + ZA UC) 

is ensured by the condition that the Fourier spectrum u (k) of the function ZJ (~1 is con- 

centrated in the region B, and by the uniqueness of expansion (1.3). Note that in the one- 

dimensional case an analogous situation is encountered in information theory (the theorem 

of Kotel’nikov-Sh~non [ 1~11. 

Consider now the general case of functions u (n) which increase as InI -+ DQ according 

to au exponential law. Let K’(B) be a space of generalized functions u (kl with supports 

concentrated in B, defined in the space I( of basic infinitely differentiable functions [II]. 

We denote the Fourier inverse transfo~ K’(B), by X’(A). It can be shown [II] that 

u fz) E X’ (A) are regular functions, that the increase as 1~1 + a0 no more rapidly than 

the power of 1x1 and continue analytically into the complex region as entire functions of 

the first order of growth and of the ?P type. Identification of opposite points of the parallel- 

epiped B is essential for eliminating (or, more precisely for the vanishing of) the func- 

tionals from K’(B) the Fourier inverse transforms of which vanish at all nodea of the 

lattice. The series (1.3) now defines a generalized function u (k) e iy’ (B), the Fourier 

inverse trsnsform r~ fx) of which is in X’(A) and assumes the value u (n> at the nodes of 

the lattice. The proof of the latter assertion can be carried out by replacing the series 

(1.3) by an approximating trigonometrical poIynomia1 and going to the limit. It can be shown 

that in X ‘(A), aB (z) plays the part of the normal 6-function. 

Thus we have established a specific isomorphism f!r (A) =j ;y’ (A) ._, K’(B). 

Each operation in N (A) (not necessarily a linear operation) corresponds in fact to the 

operations in X’(A) and K’(B). In particular, suppose that @ (n) is a function which 

decreases sufficiently rapidly as InI + OQ (to be specific, we can consider that it is non- 

zero only at a finite number of points). Then 

Kere * denotes integral convolution. Note that the multiplier @ (k) can be arbitrarily 

defined outside the region B - the relations (I.51 are not invalidated. It will be found 

convenient in a number of cases to make use of this facility and continue d, (k) analytic- 

ally over the whole k-space. 

2. As the basis of a macromodel of a continuous medium we propose the Born model 

of a simple lattice in a harmonic approximation [9]. This can readily be presented as 

follows. At the nodes of the lattice with an elemental cell A particles (atoms) of mass m 

are located. The interaction of the particies is realized by linear elastic constraints with 

given characteristics (atomic force constants) so that the elastic energy @ is a quadratic 

function of the vector of particle displacement n (n) 
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The force constants aa take into account initial forces and in the absence of the 

latter, are equal to zero. The dependence of the force constants a4 (n - n 7 on the re- 

lative disposition of particles follows from the periodicity of the lattice. The requirement 

of invariance of energy with respect to translation and rotation impose definite conditions 

on the force constants [9]. We shall also assume that residual effects are limited (the 

case of non-ionic crystals), i.e. aa and aap (n) are non-zero only over a finite range 

of values of n. 

Assuming, as usual, that the dependence on time is given by exp (- io t), we can 

write the Lagrangian of the system in the form 

2L r= mo~g=~ 2 u= (n) ug (n) - 2 2 u, (n) ma (n) - 

- x ua (7t) G (n-n’) ZQ (n’) +“z r;qiij f” (n) 
(2.2) 

nn’ n 

where the last term takes into account the contribution of external forces f a(n). 

Using the algorithm proposed above, we impose on the lattice an analytic structure, 

setting 

Ua (n) + u= (5)~ f” (n) + VA q= (5)~ m= vAp (2.3) 

Here qa(r) has the meaning of density of the body forces and p is the mass density. 

At the same time it is convenient to replace @%I and a4 (n) by generalized functions 

the Fourier transforms of which extend analytically over the whole k-space 

CD” (n) -+ VAYU (k) = CA -jJ 0” (n) Pk 
n 

VB (n) -+ v,?r=‘B (k) = VA 2 a>“@ (n) ein.& 
(2.4) 

n 
Introducing the notations 

(oIv,=Su(z)V(~)dz=~~SIIv(k)dk=~) 

(UpIv) = ss- (2.5) 
u (5) @ (5 - z’) v (5’) ds ds’ = &S”(k)@(k)v(4dk 

and making use of (1.51, we can write the Lagrangian in the form 

2L = (% 1 f’6’2g=e [ Ua> - 2 (U= 1 y=) - (U= 1 yaa 1 ue> t 2 (U,q=) (2.6) 

Consider the structure vsc (k) and IQ(k). Ob viously the tensor yap (k) is Hermitian * 

y=e (k) = YT (k) = Yfi= (- k) (2.7) 

We require the elastic energy 

CD (u,) = (u, I Y=> + l/2 (u=! yaa I u!d (2.8) 

to be invariant with respect to translation and rotation. Suppose that the corresponding 

displacement is ua*. Then it follows, that @ (u, f u=*) = @ (u*) for any ud 

(footnote on the nert page) 
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Thus 

(me* /‘Pa) -- 0, Re (u,* J ‘I’@ 1 IQ) --:= 0, (u,* 1 ‘I’=@ / q*) = 0 (2.9) 

Also, in the case of translation through the vector ao the displacement uo* (k) ,a,6(k), 

and for an infinitesimal rotation defined by the anti-symmetric tensor a 
4’ 

the displace- 

ment u,* (If) - a,@ i)@6 (h-) (@ = a / &+A 

From the first two conditions of (2.9) for the case of transIation we find (here and in 

what follows the zero suffix detones the value of the function for k = 0) 

‘PO= = 0, yfV,d _-z 0 

From this, in particular, we have that yla (k) = _ ih,-,v (k}. 

The same conditions for rotation taking into account (2.71, yield 

c?.lOl 

gova = qua”, I&Y@ @)I” == 0 

Thus Y@(k) can be expressed in the form 

(2.11) 

YY”P (k) =: ,j@+ (k) k,k, (2.12) 

where the tensor $@‘p(k), 
uniquely defined by yuB (k). 

which is symmetric in VP and Hermitian in a& is obviously 

In considering the third condition of (2.9) we note first of 811, that it is not possible 

to substitute directly the values a,* into it, since the product of &functions hasno mean- 

ing. This is associated with the fact that the non-linear functional @ (a& given in the form 

(2.1) or (2.8) is not, in general, defined for displacements which in the x-space are const- 

ant or vary linearly. To complete its definition it is necessary to construct the appropriate 

regularization**. Here we shall be guided by the following considerations. It is well- 

known that the ‘density of the Lagrangian can be determined only to the accuracy of 

divergent terms. However the true energy density must be invariant with respect to rigid- 

body rotation. This condition determines the regularization uniquely. We introduce the 

tensor 

Here S is a symmetrization operator, the components of which are readily expressed 

in terms of the Kronecher delta. It ~8x1 easily be verified that in tensors symmetric in the 

second pair of indices ($ satisfies this condition), the operator S has the inverse 

* (footnote from previous page) 

In crystals of simple structure it is usual to assume invariance with respect to inversion, 

from which the symmetry of @ o@ (n) and ‘I!@ (k) in a$ follows. However, in phenomen- 

oiogical models this restriction is unnecessary. 

** It c8n be shown that in 8 discrete representation it defines 8 method of summation of 
divergent expressions. 
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(2.14) 

and the tensor cr’wp ’ IS symmetric in VU.. It follows from (2.14) that 

I~Y”P (k) = ~CLPV (k) k,k, = cva@ (k) kvk, (2.15) 

Assuming 

Lo (k) = - ikvu, (k), eV, (k) = 5~) (k), W” (k) =cvapP (k) &P (k) (2.16) 

or in direct notations in the z-representation 

5 = grad u, E = def u, G= s c(x- 5’) r (5’) dx’ (2.17) 

we can write the expression for @ in the form 

(2.18) 

with the obvious order of operations. In this way the required regularization is determined. 

For @ to be invariant with respect to rotation it is now necessary and sufficient to 

require that 

co”= 11181 = 0 
(2.19) 

It can be shown that this is equivalent to the conditions 

co vapP = covuPtL = copPvx (2.20) 

The same symmetry is displayed by c,&~~~~. The corresponding conditions must also 

be satisfied by the initial force constants. 

For the coefficients of the expansion of the analytic function 

c”WP (,+) = ; cpv’L)LP&...$ (- i/&r). . . (- ikAp) 

P=o 

we find, taking into account (2.4). (2.12) and (2.131, 

CP 
vPA1...)\p_ 

n 

(2.21) 

In the zero order long-wave approximation c,, VVp plays the part of the usual tensor 

of elasticity moduli. The expression obtained for this quantity coincides with the well- 

known form [9]. 

From the foregoing it follows that the appropriate symmetry of ca uWp follows ex- 

clusively from the requirement of invariance of energy with respect to translation and 

rotation. This result differs from the generally accepted concepts, based on [lo] in, that, 

to obtain the correct symmetry of c,, v+P , it is necessary to impose the condition of 

absence of initial stresses. The difference is associated with the fact that invariance of 

energy with respect to rotation, according to [lo] 1 ea s d t o a relation between aa(n) and 
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@‘@fnl for between &,“nand I&~“C”. m terms of the given work). However, the deriva- 

tion of the corresponding formula in [lo] is incorrect - the requirement of linear super- 

position, which is valid in a harmonic approximation, is not satisfied. Thus, by taking 

into account the independence of $ ’ c(/c) and $ apvP (k) we can consider without any 

loss of generality that initial stresses are absent, and we can discard the corresponding 

terms in (2.6) and (2.181, h‘ h w IC we propose to do in what follows. 

It can easily be shown that the real (imaginary) part of $ apuP (k) is symmetric fanti- 

symmetric) in u,& symmetric in VP and is an even (odd) function of k. Similarly, the real 

(imagina~) part of cVqcrp (k) is an even (odd) function of k. It follows that the imaginary 

parts of Jt aBy@ fk) and cvVP fk) are equal to zero for an isotropic medium and for s 

medium with central symmetry. 

From the Lagrangian (2.6) we find the equations of motion which, when (2.15) is 

taken into account, assume the following form in the (k, w) - and (z, t) - representations : 

- po2@ y3 (k) + Pap6 (k) k&&Q (k) = q” (k) 

pg=h.qj- (5) - s @al*@ (3 - 5’) a&&U@ (z’) c-kc’ = q’x (5) 

(2.23) 

(2.24) 

If in (2.23) we put the body forces qaequal to zero we can obtain a dispersion equa- 

tion in the usual way which relates o and k, and we can find the propagation velocity of 

waves which, in general, depend on k (thre~imensio~al dispersion). The requirement of 

stability, i.e. that o a (k) should not be negative for k 6 B, imposes certain conditions 

concerning the type of the inequality, on c YwP(k). 

Expression (2.18) for the elastic energy can be written in the form 

CD= q(z)dx, 
s 

cp (5) = f ova (z) &a (2) (2.25) 

The invariance of D Va(z), and, therefore, of @ (x) as well, with respect to an infini- 

tesimal rotation follows from (2.16) and (2.19). Thus Q, ( z can be identified with the strain ) 

energy density. 

Let us write (2.24) and the last of Equations (2.17) in the form 

- pu” + div (T = - q, a = Cc = C grad u (2.26) 

where the operator C is defined by the kernel c VWp (z)). Comparing (2.26) and (2.25) we 

conclude that the symmetric tensor uv a can be treated as a stress tensor and the relation 

v = CL as an operator form of Hooke’s law. In the zero order long-wave approximation 

they coincide with the usual expressions. In view of the symmetry of the stress tensor 

it is necessary to introduce some form of supplementary couple-stress tensors as it was 

done in the asymmetrical theory of elasticity [ 1 to 71. 

It should be emphasized that the symmetry of the stress tensor and the possibility 

of expressing the energy density in the form (2.25) are direct results of the regularization 

introduced above, These conditions no longer hold in the case of other regularlzation. 
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The model described may be considered to be an exact (one-to-one) continuous re- 

presentation of the initial discrete model. The kernel of the operator C is determined by 

the force constants according to (2.22). In a phenomenological approach the Lagrangian 

(2.6) and Eqnatione(2.23) and (2.24) d e f ine a most general model of a macroscopically 

homogeneous elastic medium with a simple structure exibiting a (strong) three-dimensional 

dispersion. If the region of permissible values of k is bounded, then the phenomenological 

model is exactly equivalent to some discrete model whose force constants are given by 

(2.4). 

3. We shall consider now some particular models and take as first, the case of weak 

dispersion. Transition to the longitudinal wave approximation, strictly speaking, means 

that a certain class of functions is admissible whose spectrum is concentrated in a region 

of characteristic dimension x < 1. In this case in (2.21) or, what amounts to the same 

thing, in the expansion of the finite function C v”+yLp(%) in a series of multipoles we can 

atop at a finite number of terms (with an estimate of error). Than the zero approximation 

gives the usual theory of elasticity. 

To obtain the next approximation we start by considering the case when there is no 

central symmetry and, consequently, when the coefficient ct in (2.21) differs, in general, 

from zero. The operator form of Hooke’s law then becomes 

ova (z) = co’“@ EPfJ (2) 4 Cl *“‘“BQ$j (r) (3.1) 

and the equations of motion will be of the third order in thre~im~sional derivatives. 

In the case when central symmetry exists, c1 = 0 and the next approximation obtained 

is the second one with the following form of Hooke’s law 

(3.2) 

Equations (2.24) are of the fourth order. 

Now we shall consider the case of an isotropic medium with arbitrary dispersion. It 

can be shown that, in a Cartesian system of co-ordinates, the general expression 

cyapp (16) = li, (k) 6’“6* + p (k) (60L+j’P + @‘Q’@ ) (3.3) 

holds, where h (k) and p (k) are real functions of the scalar argument k’ = k=k”. It follows 

that in this case <in Hooke’s law can be replaced by 8. The equations of motion (2.23) 

and (2.24) assume the form 

--Wpoua (k)+v (k) k%= (k) -+ [h (k) + p (k)]k” kp uB (k) = qa (k) 

p lb” --M&L- (A + M) grad cliv u = q 

(3.4) 

(3.5) 

Here A and M are scalar operators with kernels X b) and p (z). 

From the conditions of stability it follows, that 

3h (k) + 2~ (k) > 0, P (k) > 0 

in the permissible range of variation of k. 

Zero approximation is followed by the second approximation 

(3.6) 
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h (k) = h, - hak2, P U4 = PO - pzka (3.7) 

If the medium is discrete and isotropic up to and including the second approximation, 

then the constants of the expansion cart be expressed in terms of the micro-parameters 

As = 3Ps - 49,, 
where (na = non”) 

Ps = --2Ps f Ps (s = 0,2) (3.8) 

-----‘---2 Ps - 
3o.@v, 11 

n2is w, (n), -2-z 
Qs = 36.6%, n 

nsa,ngw~ (n) (3.9) 

from which, taking into account (3.61, we find in particular that pa, go < 0. 

Returning to Equations (3.51, we note, that the operators A and M commute with 

space and time derivatives. This enables us to formulate the following: the solution to a 

problem in the theory of elasticity with three-dimensional dispersion can be obtained from 

the solution to the corresponding problem in the classical theory of elasticity by replacing 

the Lame’ parameters ,&, and cl0 with the operators A and M,with appropriate interpretation 

of combinations of operators*.The latter in general reduces to finding one-dimensional 

Fourier inverse transforms of the combinations of X (k) and p (k). Note that this concept 

can obviously be extended to anisotropic problems, but the deciphering of operators in 

this case presents considerable difficulties. 

As an example let us construct Green’s tensor for the displacements of an isotropic 

medium with three-dimensional dispersion (statics). From the familiar expression for 

Green’s tensor in the classical theory of eIasticity [14], we find 

From this we obtain the integral form 

dx' - x (2’) L’,dg (x - x’) dx’ 

The kernels T(X) and X ($1 are given by the Fourier transforms 

1 
z(k)= .&p(jo ) x (‘I = 

nry t-p(k) 
8nl” (k) fh (k) + 2y (kf] 

(3.11) 

(3. X2) 

In specific problems it is more convenient to use the direct expression for UoP (xf 

with the aid of the theorem of residues. Thus, as a second approximation on the assumption 

that pn < 0, he -i_ 2~2 < 0, we find, that 

* For comparison refer to the analogous situation in the residual theory of creep [13]. 
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Thus already the second approximation eliminates the divergence of Green’s tensor 

as r + 0. An analogous situation arises in electrodynamics with higher derivatives [l5]. 

Strictly speaking, however, the study of waves with lengths of the order of the character- 

istic dimensions a and b is only possible within the framework of a model of the medium 

with strong dispersion (the author is indebted to G-1. Barenblatt for discussing this point). 

In this connection elimination of divergence in the second approximation theory is of a 

formal nature and is of value only for phenomenological models. 
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